- Full-Carry Look-Ahead Across the Four Rits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- Supply Voltage and Ground on Corner Pins to Simplify P-C Board Layout

TYPICAL ADD TIMES

	TWO	TWO	TYPICAL POWER
	8-BIT	16-BIT	DISSIPATION
TYPE	WORDS	WORDS	PER ADDER
'283	23ns	43ns	310 mW
'LS283	25ns	45ns	95 mW
' \$283	15ns	30ns	510 mW

description

The '283 and 'LS283 adders are electrically and functionally identical to the '83A and 'LS83A, respectively; only the arrangement of the terminals has been changed. The 'S283 high performance versions are also functionally identical.

These improved full adders perform the addition of two 4-bit binary words. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look-ahead across all four bits generating the carry term in ten nanoseconds, typically, for the '283 and 'LS283, and 7.5 nanoseconds for the 'S283. This capability provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form. End around carry can be accomplished without the need for logic or level inversion.

Series 54, Series 54LS, and Series 54S circuits are characterized for operation over the full temperature range of -55°C to 125°C. Series 74, Series 74LS, and Series 74S circuits are characterized for 0°C to 70°C operation.

SN54283, SN54LS283... J OR W PACKAGE SN54S283... J PACKAGE SN74283... N PACKAGE SN74LS283, SN74S283... D OR N PACKAGE (TOP VIEW)

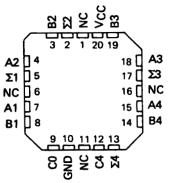
Σ2 1 1 16 VCC

B2 2 15 B3

A2 3 14 A3

Σ1 4 13 Σ3

A1 5 12 A4


SN54LS283, SN54S283 . . . FK PACKAGE (TOP VIEW)

11 B4 10 Σ4

B1

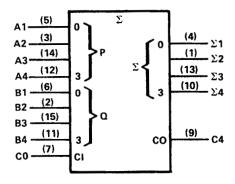
CO

GND

NC - No internal connection

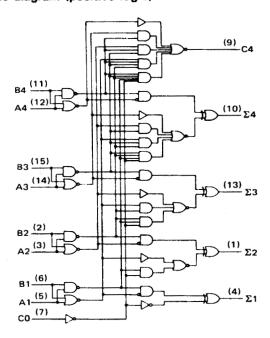
FUNCTION TABLE

						OUT	PUT				
ŀ				WHE	N		WHE	N			
1	INF	UT		C0 =	٧ ا		C0 =	н/			
					/ W	HEN		/ W	HEN		
				_	C	2 - L	/	C	C2 - H		
A1/	B1/	A2/	B2/	٤1/	/-	C2/	Σ1/	Σ2/	C2/		
Z A3	83	<u> </u>	/ 84	<u>Σ3</u>	<u> 24</u>	<u> </u>	<u> </u>	Z4	Z 04		
L	L	L	L	L	L	L	н	,L	L		
н	L	L	L	н	L	L	L	н	L		
١ ـ	н	L	L	Н	L	L	L	н	L		
н	н	L	L	L	н	L	н	н	L		
L	L	н	L	L	н	L	н	н	L		
Н	L	н	L	н	н	L	L	L	н		
L	н	н	L	н	н	L	L	L	н		
ĺн	н	н	L	L	L	н	н.	L	н		
L	L	L	н	L	н	L	н	44	L		
н	L	L	н	н	н	L	L	L	н		
L	н	L	н	н	н	L	L.	L	н		
н	н	L	н	L	L	н	н	L	н		
L	L	н	н	L	L	н	н	L	н		
н	L	н	н	н	L	н	L	н	н		
L	н	н	н	н	L	н	L	Н	н		
Н	н	н	н	L	н	н	н	н	н		


H = high level, L = low level

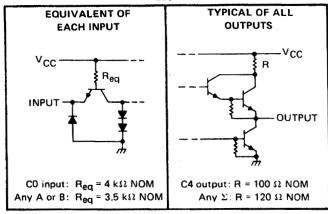
NOTE: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ1 and Σ2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs Σ3, Σ4, and C4.

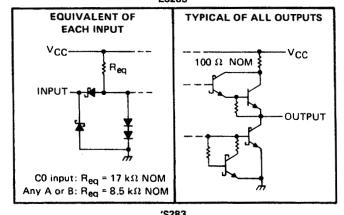
SDLS095A - OCTOBER 1976 - REVISED MARCH 1988


logic symbol†

 $^{\dagger}\text{This}$ symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.


logic diagram (positive logic)


Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

'283

'LS283

EQUIVALENT OF EACH INPUT

VCC

2.8 k\(\Omega\) NOM

INPUT

OUTPUT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .																				7V
Input voltage: '283, 'S283								٠.												5.5V
'LS283																				7V
Interemitter voltage (see Note 2) .																				5.5V
Operating free-air temperature range:	SN5	42	83,	SN	541	LS2	283	, S	N5	452	83						5	5°(Cto	125°C
	SN7	42	83,	SN	74	LS2	283	8, S	N7	452	283							0	°C 1	to 70°C
Storage temperature range																	6	5°	C to	150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the '283 and 'S283 only between the following pairs: A1 and B1, A2 and B2, A3 and B3, A4 and B4.

recommended operating conditions

			SN5428	3		SN7428	3	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply Voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	Any output except C4			-800			-800	
mightever output current, tOH	Output C4	·		-400			- 400	μА
Low level output ourrent la	Any output except C4			16			16	
Low-level output current, IOL	Output C4			8			8	mA
Operating free-air temperature, TA		55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAM	ETED	TEST CO	NDITIONS†		SN5428	3		SN7428	3	
	FARAIN	EIEN	1231 CO	NDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input volt	age			2			2			V
VIL	Low-level input volt	age					0.8			0.8	V
VIK	Input clamp voltage		VCC = MIN,	I _I = -12 mA			-1.5			-1.5	V
V _{ОН}	High-level output vo	ltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.6		2.4	3.6	,	v
VOL	Low-level output vo	tage	V _{CC} = MIN, V _{IL} = 0.8 V,			0.2	0.4		0.2	0.4	v
l _l	Input current at ma	ximum	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
ΉH	High-level input curr	ent	VCC = MAX,	V ₁ = 2.4 V			40			40	μА
IIL	Low-level input curr	ent	VCC = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit	Any output except C4	V _{CC} = MAX		-20		-55	-18		55	<u> </u>
.08	output current §	Output C4	1 VCC - WAA		-20		-70	-18		-70	mA ·
¹cc	Supply current		V _{CC} = MAX,	All B low, other inputs at 4.5 V		56			56		
,00	Copply Cullent		Outputs open	All inputs at 4.5 V		66	99		66	110	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER 4	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	СО	A 53			14	21	
tpHL_] 0	Any Σ	C _L = 15 pF, R _L = 400 Ω,		12	21	ns
^t PLH	A _i or B _i	5.	See Note 3		16	24	<u> </u>
^t PHL	Alorbi,	Σ_{i}			16	24	ns
tPLH .	· C0				9	14	
^t PHL	1	C4	CL = 15 pF, RL = 780 Ω,		11.	16	ns
^t PLH	A. or B.	CA	See Note 3		9	14	
^t PHL	A _i or B _i	C4			11	16	ns

[¶]tpLH = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

Sonly one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

recommended operating conditions

	S	N54LS2	83	SI	N74LS2	83	Ī
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			400	μΑ
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMET		700	T CONDITIO	auc†	SI	154LS2	83	SI	N74LS2	83	····
	PARAMET	EH	1 E 8	ST CONDITIO	NS'	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input v	oltage				2			2			V
VIL	Low-level input v	oltage						0.7			0.8	٧
VIK	Input clamp volta	age	V _{CC} = MIN,	1 _j = -18 mA				-1.5			-1.5	٧
Voн	High-level output	voltage	V _{CC} = MIN, I _{OH} = -400 μA		VIL = VIL max,	2.5	3.4		2.7	3.4		v
Voi	Low-level output	voltage	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	, , ,
VOL	Low-level output	Vortage	VıL = VıL max		IOL = 8 mA					0.35	0.5	V
	Input current at maximum	Any A or B	V MAY	V - 7V				0.2			0.2	
11	input voltage	СО	V _{CC} = MAX,	V = / V				0.1			0.1	mA
1	High-level	Any A or B	V MAY	V -07V				40			40	
ЧН	input current	CO	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μΑ
Ī	Low-level	Any A or B	V _{CC} = MAX,	V. = 0.4.V			-	-0.8			-0.8	
11L	input current	CO	VCC - MAA,	V - 0,4 V				-0.4			-0.4	mA
los	Short-circuit out	out current§	V _{CC} = MAX			-20		-100	-20		-100	mA
					All inputs grounded		22	39		22	39	
Icc	Supply current		V _{CC} = MAX, Outputs open		All B low, other inputs at 4.5 V		19	34		19	34	mA
					All inputs at 4.5 V		19	34		19	34	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	CO	Any Σ				16	24	
tPHL		Any 2				15	24	ns
^t PLH	A _i or B _i	2.	1			15	24	
^t PHL	7,0,5,	Σ_{i}	$C_L = 15 pF$,	$R_L = 2 k\Omega$,		15	24	ns
^t PLH	CO	C4	See Note 3			11	17	
tPHL.		<u>~</u>				11	22	ns
[†] PLH	A _i or B _i	C4	1			11	17	
tPHL	7 7 5 6	~				12	17	ns

[¶]tpLH = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

[§]Only one output should be shorted at a time and duration of the short-circuit should not exceed one second.

tpHL = propagation delay time, high-to-low-level output

recommended operating conditions

			SN54S28	3	SN74S283			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
	Any output except C4			-1			-1	mA
High-level output current, IOH	Output C4			-500			-500	μΑ
	Any output except C4			20			20	
Low-level output current, IOL	Output C4			10			10	
Operating free-air temperature,	TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER			TEST CO	ONDITIONS†	MIN	TYP†	MAX	UNIT
VIH	High-level input vo	itage				2			V
VIL	Low-level input vo	ltage						8.0	V
ViK	Input clamp voltag	je		V _{CC} = MIN,	I _I = -18 mA			-1.2	V
.,	41' 5 4		SN54S283	V _{CC} = MIN,	V _{1H} = 2 V,	2.5	3.4		
VOH	High-level output	voltage	SN74S283	VIL = 0.8 V,	I _{OH} = MAX	2.7	3.4		† ′
VOL	Low-level output v	oltage/		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = MAX			0.5	V
11	Input current at m input voltage	aximum		V _{CC} = MAX,	V _I = 5.5 V			1	mA
¹ ІН	High-level input cu	irrent		V _{CC} = MAX,	V ₁ = 2.7 V			50	μА
HL	Low-level input cu	rrent		V _{CC} = MAX,	V ₁ = 0.5 V		***************************************	-2	mA
1	Short-circuit	Any outp	out except C4			-40		-100	
los	output current§	Output C	:4	VCC = MAX		-20		-100	mA
Icc	Supply current			V _{CC} = MAX,	All B low, other inputs at 4.5 V		80		
•00	coppiy cuitelit			Outputs open	All inputs at 4.5 V		95	160	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	CO	A 53			11	18	
ФНL		Any Σ	$C_{L} = 15 pF$, $R_{L} = 280 \Omega$,		12	18	ns
ФLН	A _i or B _i	5.	See Note 3		12	18	
tPHL	~ OI B	Σί			11.5	18	- ns
tPLH .	CO	C4			6	11	
ФHL.		C4	$C_{L} = 15 pF, R_{L} = 560 \Omega,$		7.5	11	ns
tPLH .	A. or B.	C4	See Note 3		7.5	12	
tPHL	A _i or B _i	\ \frac{\pi_{\pi}}{2}			8.5	12	ns

 $[\]P_{tPLH}$ = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

 $[\]S$ Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL = propagation delay time, high-to-low-level output

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
76043012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
7604301EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
7604301FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31202B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31202BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31202BFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SN54LS283J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54S283J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN74283N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS283D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS283DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS283DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS283DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS283N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS283N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS283NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS283NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS283NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S283D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI
SN74S283N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S283N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74S283NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SNJ54LS283FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS283J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS283W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S283FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S283J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S283W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC

(1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check

PACKAGE OPTION ADDENDUM

26-Sep-2005

http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated